
A two-dimensional variational analysis method for

NSCAT ambiguity removal: Methodology, sensitivity,

and tuning*

R. N. Hoffman*, S. M. Leidner t, J. M. Henderson t,

R. Atlas*, J. V. Ardizzone_, and S. C. Bloomg

September 20, 2001 ¶

*Corresponding author address: Dr. Ross N. Hoffman, Atmospheric and Environ-

mental Research, Inc., 131 Hartwell Avenue Lexington, MA 02421-3126 Email: rhoff-
man@aer.com.

tAtmospheric and Environmental Research Inc., Lexington, MA 02421
_Data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

§General Sciences Corp, a Subsidiary of Science Applications International Corporation
¶Submitted to Journal of Atmospheric and Oceanic Technology.



Abstract

In this study, we apply a two-dimensional variational analysis method (2d-VAR) to select

a wind solution from NASA Scatterometer (NSCAT) ambiguous winds. 2d-VAR determines

a "best" gridded surface wind analysis by minimizing a cost function. The cost function

measures the misfit to the observations, the background, and the filtering and dynamical

constraints. The ambiguity closest in direction to the minimizing analysis is selected.

2d-VAR method, sensitivity and numerical behavior are described. 2d-VAR is compared

to statistical interpolation (OI) by examining the response of both systems to a single ship

observation and to a swath of unique scatterometer winds. 2d-VAR is used with both NSCAT

ambiguities and NSCAT backscatter values. Results are roughly comparable. When the

background field is poor, 2d-VAR ambiguity removal often selects low probability ambiguities.

To avoid this behavior, an initial 2d-VAR analysis, using only the two most likely ambiguities,

provides the first guess for an analysis using all the ambiguities or the backscatter data.

2d-VAR and median filter selected ambiguities usually agree. Both methods require

horizontal consistency, so disagreements occur in clumps, or as linear features. In these

cases, 2d-VAR ambiguities are often more meteorologically reasonable and more consistent

with satellite imagery.



1 Introduction

Scatterometers are active radars designed to measure the backscatter or normalized radar

cross section (NRCS) from the earth's surface at moderate incidence angles. The advantage

of using moderate incidence angles (20- 70 °) is that the major mechanism for scattering

is then Bragg scattering from centimeter-scale waves, which are, in most conditions, in

equilibrium with the local wind. Although the scatterometer winds are usually provided as

neutral winds at some reference height, the measurement is physically most closely connected

with surface stress (Brown 1986 [7]).

Scatterometers have been mounted on stationary platforms, aircraft and satellites. Since

1991, satellite-borne scatterometers have provided a wealth of wind data over the world

ocean. Previous satellite scatterometers include Seasat-A Satellite Scatterometer (SASS) in

1979; the active microwave instruments (AMI) on the first and second European Remote

Sensing satellites (ERS-1 and ERS-2), during 1991-2000; and the NASA Seatterometer

(NSCAT) on the first Advanced Earth Observing Satellite (ADEOS-1) during 1996-1997.

Currently and since 1999, SeaWinds on QuikSCAT has been producing useful data.

Scatterometers measure wind speed very accurately; Freilich and Dunbar (1999 [15])

report that NSCAT measured wind speed to within 1.3 ms -1 in an rrns sense, while Stoffelen

and Anderson (1997 [55]) suggest that the ERS-1 measurement error standard deviation is

actually only 0.5 ms -1. However, the wind direction from scatterometers is not uniquely

determined. Wind speed and direction are inferred from a number of closely colocated

(both temporally and spatially) radar measurements from a number of different azimuth

angles. The measured NRCS, denoted a °, varies with the relative azimuth angle between

the antenna and wind direction. An "upwind-crosswind" variation exists because small,

wind-generated gravity waves on the ocean surface reflect more of the radar signal when

wave crests are perpendicular (i.e., "upwind") to the radar antenna than when wave crests

are parallel (i.e., "crosswind"). The "upwind-downwind" signal is very small, because when

fetch is not limited, the orientation and amplitude of these waves is nearly the same if the

wind direction is shifted by 180 ° .



Typically several a0 measurementsare grouped into 25 or 50 krn wind vector cells

(WVCs) for wind retrievah Modeled cr° values are computed from a geophysical model

function which requires spacecraft position and orientation (known) and wind speed and

direction (unknowns) as inputs. The normalized squared differences between measured and

modeled a0 values are summed as part of the objective function of a maximum likelihood

estimator (MLE). Then, wind speed and direction are varied to minimize the difference be-

tween measured and modeled cr° values. However, over the range of possible wind speeds and

directions (i.e., 0 - 50 ms -1 and 0 - 360°), the MLE produces from two to six local maxima,

and it is not possible to determine the wind uniquely from the MLE alone. The wind vectors

corresponding to these maxima are called "ambiguities". For operational numerical weather

prediction (NWP), and for other purposes it is necessary to choose one ambiguity at each

location in a meteorologically consistent manner. Once we have chosen a single ambiguity,

we call the result a "unique" wind.

Median filter techniques have been used for ambiguity removal, but may fail at swath

edges and in regions of strongly curved or sheared flow. For NSCAT, the Jet Propulsion Lab-

oratory (JPL) used a median filter initialized by the ambiguity with the highest MLE. This

method was completely objective and autonomous. Later, better performance was obtained

by initializing the scatterometer wind field with the ambiguity closest to the operational

gridded surface wind field analysis from the National Centers for Environmental Prediction

(NCEP, formerly the National Meteorological Center or NMC). This product is referred to

as the nudged wind product since an outside source is used to initialize (or "nudge") the me-

dian filter. This method is also completely objective but depends on information in addition

to the scatterometer measurements. The performance of the median filter method has been

quite successful (Gonzales and Long 1999 [18]) but is not based on any physical model of

wind flow. Consequently, the median filter occasionally selects physically unrealistic winds.

Patches of unrealistic winds in the scatterometer data might have a disastrous impact on the

quality of analyses and NWP forecasts. Careful quality control (QC) is required, of course,

but is problematic if the model winds were used in the ambiguity removal.



This paper reportson the useof a two-dimensionalvariational analysismethod (2d-VAR)

for ambiguity removal. 2d-VARgeneratesa gridded surfacewind analysisby minimizing an

objective function, which is a weightedsum of severalconstraints on the differencebetween

the analysisand the background,andbetweenthe analysisandthe data. While the "nudged"

median filter usesa priori information for initialization, 2d-VAR uses such information both

for initialization and as part of the background constraints. 2d-VAR was originally described

by Hoffman (1982 [22]) to analyze Seasat scatterometer (SASS) data. In this first formu-

lation, only observations from conventional platforms (ships, buoys, radiosondes) and from

SASS were combined with an a priori or background wind field. 2d-VAR was extended to

include smoothness (i.e. filtering) constraints and a dynamical constraint by Hoffman (1984,

hereafter H84 [23]).

Since H84 2d-VAR has undergone several developments. These include:

• Optional use of 12 point bicubic interpolation to the "obs" locations (§ B).

• Use of a0 values (§ 6.a.1).

• Reformulation of the constraint terms (§ 3.b).

2dAZAR may combine both wind retrieval and ambiguity removal by analyzing the a0 data

directly. For both ERS-1,2 and NSCAT, in addition to the possibility of analyzing cr° data,

the ambiguities may be treated in the same manner as SASS data were treated by H84,

or unique winds may be treated as buoy "obs". 2d-VAR has been used to produce several

long running data sets for oceanographic research. First, 2d-_q_R was adapted for use with

time binned wind observations by FSU researchers including Legler et al. (1989 [33]), Meyers

et al. (1994 [38]), Jones et al. (1995 [28]), and Pegion et al. (2000 [45]). Later, 2d-¥%R was

extended to SSM/I wind magnitude data by Atlas et al. (1991, 1996 [2, 3]). We will review

the 2d-VAR formulation in section § 3, and extensions for scatterometer data in § 6.

2d-VAR, in common with other 3d-VAR and 4d-VAR systems, is based on a Bayesian

viewpoint. In fact the 2d-\(4R cost function may be written as J = Jb + Jo, where

• J is the total cost function.



• Jb is the background cost function.

• Jo is the "obs" cost function.

Since J is a function of the surface wind field, minimizing J produces a gridded surface wind

analysis that simultaneously closely fits the data and background (H84). As in any analysis

method, specification of the errors of the data and the background are vitally important.

Our implementation of 2d-VAR employs a heuristic model of forecast error statistics, orb is

defined below in (3) as the weighted sum of several constraints. Each constraint function,

Jm, is a scalar which measures the the difference between the analysis and background

using the ruth constraint. The constraints include filtering and dynamical consistency. The

combination of these constraints mimicks the usual Jb term in 3d-VAR or 4d-VAR (e.g.

Th@aut et al. 1993 [57]). Therefore 2d-VAR as described here may be considered to be

a specialization of 3d-VAR to ocean surface wind. Wahba and Wendelberger (1980 [58])

showed that under certain conditions 3d-VAR and OI are the same. Therefore 2d-VAR is

closely related to OI as well. Although the formulation of 2d-VAR described here is very

different from standard OI or 3d-VAR, analysis results can be made similar by appropriate

choice of lambda weights (Ai, multiplying factors which control how much each function

contributes to the total objective flmction). (See § 5.) Thus 2d-VAR is a form of OI in

which the correlations are parameterized with a small number of degrees of freedom. After

subjective tuning, the 2d-VAR heuristic model of forecast error statistics produces results

similar to conventional error models, but has the potential advantage of being specified by

a small number of parameters. In principle, these parameters might vary with geographic

location, with synoptic situation and might even be tuned online, using current or recent

data. As a result, 2d-VAR is an ideal candidate for on-line estimation of parameters as Dee

et al. (1998 [11, 12]) have proposed. This feature of 2d-VAR has been exploited by Pegion

et al. (2000 [45]) to objectively tune these parameters. In the work described here, these

parameters are chosen subjectively based on experimentation. However some of our results

address how to tune these parameters to get similar results when changing the analysis

resolution, data density, or data representation (see § 7.)

4



The outline of the rest of this paper is the following. First wedefinethe NSCAT data and

the nominal processingof the NSCAT data (§2). We then describe2d-VAR for conventional

data (§ 3). Experiments with a single ship observation then illustrate the numerical behavior

and the sensitivity of 2d-VAR (§ 4). These experiments demonstrate that the subjectively

tuned 2d-VAR approximates OI. Idealized OI experiments with a swath of unique NSCAT

winds are presented to demonstrate the close relationship between 2d-¥\_R and OI (§ 5). The

use of 2d4rAR for ambiguity removal for NSCAT is then described (§ 6). Experiments using

ambiguities and cr° values are compared. With proper tuning the results are similar (§ 7).

We have improved the quality of our ambiguity removal by using a first stage in which only

"dual-ambiguities" are processed (§8). Examples of our dual-QC method in 2d-VAR are

shown in § 8.a. Then § 9 is a conclusion. In a companion article (Henderson et al.2001 [21])

the dual-QC 2d-VAR is applied to the entire NSCAT mission and is tested as an alternative

to the standard ambiguity removal schemes in impact experiments using the GEOS-2 data

assimilation system.

2 NSCAT data

The focus of this study are winds retrieved from NSCAT. NSCAT was launched aboard the

ADEOS-1 spacecraft on 16 August 1996 from Tanegashima Space Center in Japan. Unfortu-

nately, after only nine months of operation, the ADEOS-1 solar power array failed. ADEOS-1

had a nearly polar Sun-synchronous orbit at a height of _ 800 krn, with a period of _ 100

minutes.

NSCAT made observations covering two 600 krn swaths, one on either side of the space-

craft, separated by a gap of _ 330 krn corresponding to low incidence angles. On each side

of the spacecraft, NSCAT operated three 3 rn long, stick-like antennas at 13.995 GHz. The

foreward and aft antennas were vertically polarized, while the mid antenna was both ver-

tically and horizontally polarized. Thus NSCAT made observations in sequence from eight

beams, i.e. from eight combinations of antennas and polarizations. While the foreward



and aft antennasareseparatedby 90° as in the ERS-1 design,the anglesbetweenthe mid

antennaand the othersare 20 and 70 °, whereas in the ERS-1 design these angles are 45 °.

Complete descriptions of the NSCAT antenna subsystems, resolution, registration of ob-

servations, measurement sequencing, hardware, and ground system are provided by Naderi

et al. (1991 [39]).

In the ground processing, the individual backscatter observations associated with the

different beams are organized by a grid oriented along the satellite track. Nominally there

are 4 or 16 backscatter observations in a 25 or 50 km WVC. The WVC coordinates along,

and perpendicular to, the satellite track are called row and cell, respectively. Each cell is

associated with a nearly constant incidence angle for each antenna, with the values being

equal for the fore and aft antennas. Wind ambiguities are retrieved for each WVC contain-

ing a sufficient number of quality controlled backscatter observations. The retrieved winds

maximize a likelihood function locally. The likelihood function in turn depends on the geo-

physical model function to compare a candidate wind to the backscatter observations (Chi

and Li 1988, Ofi_ler 1994 [8, 44]). Examples of the likelihood function are described in § 6.a.1.

Geophysical model functions are empirical relationships used to relate the backscatter to

the geophysical parameters, and are derived from colocated observations (Jones et al. 1977

[30 D. In current model functions, the backscatter depends nonlinearly on wind speed and

direction. Models developed from aircraft flights have been used as baseline model functions

for satellite instruments. However substantial post-launch modifications and refinements

were needed for SASS (Boggs 1981 [5]) and for ERS-1 (Offiler 1994, Stoffelen and Anderson

1997 [44, 55]). The prelaunch NSCAT model function, denoted NSCAT-0 or SASS2, was

developed by Wentz et al. (1984 [60]) from the Seasat data set by matching the statistics

of the observed a0 and those simulated assuming that the ocean surface winds follow a one

parameter Weibull distribution (Conradsen et al. 1984 [9]). The fitting procedure used six

parameters at each polarization and incidence angle. The first postlaunch NSCAT model

function, denoted NSCAT-1, was developed using a combination of SSM/I, NCEP and

European Centre for Medium-Range Weather Forecasts (ECMWF) winds colocated with



NSCaT cr° observations. A further refinement, denoted NSCAT-2, has been developed by

Wentz and Smith (1999 [61]), based on colocations with SSM/I and ECMWF winds.

There have been many theoretical attempts to derive model functions for scatterometers

but they have not been as successful as the purely empirical model functions. A moments

consideration of the complexity of the ocean surface under moderate to high wind conditions

suggests that a purely theoretical approach is a difficult and ambitious undertaking. Recent

examples include Janssen (1994 [27]) and Romeiser et at. (1997 [49, 50]).

Note that the model function relates wind speed and direction to the backscatter. In this

calculation the geometry of the observation is taken as a given. To retrieve scatterometer

wind information, several backscatter measurements at the same earth location, but with

different viewing geometries, must be used. The winds are obtained by optimally fitting

these data.

Because of the nonlinearity of the model function and the various sources of error, several

wind vectors consistent with the backscatter observations are usually found (Price, 1976

[47]). (See § 6.a.) These multiple wind vectors are called aliases in the early literature and

are now generally referred to as ambiguities. With two beams, SASS typically retrieved four

ambiguities. With additional beams, NSCAT and ERS often retrieve just two ambiguities

with directions approximately 180 ° out of phase. The ambiguities are ordered by likelihood.

The first ambiguity is the ambiguity with the highest likelihood; it is most consistent with

the backscatter data. The second ambiguity is usually of nearly equal speed and consistency,

but of nearly opposite direction.

Since the wind retrieval is performed for each WVC individually and since there is little

to distinguish the first two ambiguities, a wind field of first ambiguities will generally be very

irregular with many wind reversals. Spatial filtering can be used to produce a horizontally

consistent wind field and resolve the directional ambiguity. A variety of approaches have

been used. These include the work of Hoffman (1984 [23]), Schroeder et aI. (1985 [51]),

Schultz (1990 [52]), Shaffer et al. (1991 [53]), Wentz (1991 [59]), Badran et al. (1991 [4]),

Offiler (1992 [43]), Th@aut et aI. (1993 [56]), Long (1993 [35]), Stoffelen and anderson
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(1997 [54]), Jones et al. (1999 [29]), Figa and Stoffelen (2000 [13]), and de Vries and Stof-

felen (2000 [10]). Simulation studies for NSCAT established that a median filter operating

autonomously, i.e. with no a priori information, would provide excellent ambiguity selection

(Schultz 1991, Shaffer et al. 1991 [52, 53]). The median filter must be initialized or seeded

with some initial choice of ambiguities. In autonomous mode the seed is the first ambiguity.

In practice this choice did not perform as well as expected. For the nudged median filter, the

seed is the ambiguity closest to a background obtained from an operational analysis or short

term forecast. No further reference to the background is made. At the end of the process

the chosen winds are consistent with backscatter observations in the WVC and horizontally

consistent with neighboring WVCs, but are not necessarily close to the background. Dif-

ferences between autonomous and nudged results show that the median filter has multiple

solutions. Thus spatial filtering does not resolve all ambiguity in the sense that multiple

horizontally consistent wind fields are plausible.

It should be noted that there are several NSCAT data products available. These differ in

resolution (25 or 50 kin), geophysical model function (NSCAT-0, NSCAT-1, or NSCAT-2),

and ambiguity selection procedure (autonomous or nudged median filter). All JPL NSCAT

data sets use the median filter described by Shaffer et al. (1991 [53]). The 25 km resolution

data sets based on the NSCAT-2 model function and the nudged median filter are the most

current. Some of the preliminary results presented here however use other versions of the

NSCAT data.

3 2d-VAR method

2dA:AR finds the minimum of an objective function. The objective function depends on

the surface wind field. Given any wind field the objective function measures the difference

between the given field and the observations, and between the given field and the a priori or

background wind field. The minimizer of the objective function is therefore the wind field

which optimally fits the observed and a priori data.



The order of the stepstaken in 2d-VARis flexible and the subject of ongoingtuning. The

nominal and minimal setup is to:

1. Definethe geometryof the analysisgrid, and on this grid definethe backgroundwind

field.

2. Set the inital estimatefor the analysisequal to the background.

3. Readthe "obs" data sets,making necessaryconversionsand performing grossquality

control (QC).

4. QC the "obs" basedon simulated valuesfrom the background.

5. Minimize the objective function J.

6. Write the analysis wind field and simulated "obs" values from the analysis.

This basic operation may be modified in several ways.

• The initial guess may be an arbitrary wind field.

• After a preliminary analysis, the analysis and background can be interpolated to a

finer grid. The minimization then restarts, using the newly interpolated analysis as

the initial estimate of the fine scale analysis.

• After a preliminary analysis, all data may be subjected to a second QC. This accepts

some of the data which were initially rejected but are corroborated by near-by data.

The minimization might then restart.

In § 8 a small modification of this basic setup provides the dual QC approach.

In order to minimize the objective function J we must be able to calculate it for any

physically reasonable value of the control variable vector X, which here represents the sur-

face wind field. In the current formulation X contains those values of the gridded wind

components (u,v) which are independent and which are free to vary. Some points in the

gridded wind field are not independent. In a global field points at longitudes 0 ° and 360 °

9



are the same.Not all points in the gridded wind fields areallowedto vary. If thereare fixed

points, they are not part of the control vector. The fixed points are nominally set equal to

the background, but in general they are arbitrary. In particular for muttiprocessingusing

domaindecompositionthe fixed points maybe obtainedfrom another processor'spreviously

computedsolution. A detailed description of the gridded wind field representationis given

in §A.

Efficient minimization also requires the calculation of the gradient of J, i.e. OJ/OX.

This is accomplished by the adjoint of the routines which calculate J (Hoffman et al. 1992

[26]). The minimization procedure we use is a version of the limited-memory quasi-Newton

algorithm (Liu and Nocedal 1989 [34]), which was described and evaluated by Navon and

Legler (1987 [40]). The stopping criteria is either

IG I _< emax(1, IXl) ' (1)

or, until N I function evaluations, whichever occurs first. Here

• G is the gradient of J with respect to X.

• e is the gradient test stopping parameter.

• Nf is the function call stopping parameter.

We have been unsuccessful at preconditioning the minimization. Typically several hun-

dred iterations are required to satisfy our very strict convergence criterion. In a typical

experiment the rms difference in the u or v wind components between the solution after 250

and after 225 function calls is _ 0.02 ms -1, with maximum differences of _-, 0.5 ms -1. The

reason for the slow convergence is due to the step by step expansion of the region of influence

• of the data (see Fig. 5). A regridding process speeds convergence (§ 4.b.2).

The J used in this study may be written in the form,

z = & + &, (2)

where

& = AVV, rMA"_VM "q- /_LAP&AP -31- *)_DIV&IV -_- /_VOR&OR + -_DYN&YN, (3)
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and

Jo = Aoo v&oNv+ h*  B&MB+ hS D&pD+ hNB S&ROS. (4)

Here, the ureights, denoted hi, control the amount of influence each constraint has on the

final analysis. As mentioned in the Introduction, the Ai are chosen subjectively in this study,

but techniques to tune them objectively have been developed. Values of the hi which were

used for various experiments are reported below. It should be noted that these are weak

constraints and therefore the ._ are not Lagrangian multipliers. Table 1 contains a summary

of the constraints used. Details of the formulation follow, or are given in the Appendices.

3.a "Obs" functions

In 2d-VAR, the misfit between data and analysis is measured by a objective function de-

fined as a sum of squared errors over all data locations. Multiplying factors, called lambda

weights and denoted by hi, control how much each function contributes to the total objective

function. For example, we might divide ships into special research ships and all others and

buoys into Tropical Atmosphere-Ocean (TAO) buoys and all others, or we might lump all

these data into the conventional platform class. Similarly we might divide the SSM/I data

depending on the DMSP spacecraft designation (e.g., F8), or keep them all together. We

expect the minimizing analysis to fit the data more closely for a given data type as the h

weight for that data type is increased.

In general, the total "obs" function, do is the weighted sum of individual "obs" operators

for each data class, but here we report experiments with only one type of data and some of

the

ho= (hoo v,h MB, ANRo )

are set to zero. Usually the "obs" function is given by the sum of squared differences between

simulated (i.e., calculated from the analysis) and data values normalized by the estimated

"obs" (and representativeness) error(s). For example,

&oNv = _2 (_ - _°)_ (v_ - Vo)_ (6)• _-2 + 2
8 u S u

11



Here

• (ua,v_) is the analyzed wind interpolated to the "obs" locations as described in § B.

• (uo, Vo) is the observed wind.

• su is the wind component error standard deviation.

If 'Lobs" errors within the data class are correlated in a known way, these correlations can

be accounted for as described by Th6paut et al. (1993 [56]), by setting JcoNv = zTo -1Z.

Here

• Z is the vector of normalized departures.

component of each "obs".

Z would contain an entry for each wind

• O is the matrix of observation error correlations.

In the 2d-VAR experiments reported here, 'Lobs" error correlations are ignored. Currently

su is taken to be a constant 1 rr_s -1 and knowledge of the %bs" error standard deviation is

absorbed into kCONV. The special 'Cobs" flmctions for scatterometer data are described later

in § 6.a.

3.b Background constraints

As given in (3), the background function, Jb is a weighted sum of several constraints, each

providing a measure of the difference between the analysis and background wind field. The

simplest constraint measures the square of the vector wind magnitude:

&'WM 1 f
- Svw, ,h - Vb) dA (7)

The effect, of dvwM is to constrain the size of the analysis increments.

The scaling parameter S_,_,..Mmakes d_,wM nondimensional and of convenient magnitude.

[If these were not concerns SvwM might be absorbed into AvwM since the adjustable parameter

AVWMmultiplies dvwM in (3).] We define SvwM in terms of typical velocity and length scales,

SvwM = I/2L 2 = L4/T 2. (8)

12



Here

• L is the length scale [10 6 m = 10 a kin].

• V is the velocity scale [10 ms-l].

And from these we define a time scale for later use:

• T is the time scale [L/V = 10 5 s].

The other background constraints which are summarized in Table 1 are given by

JLAP = T 2 fA[V2(Ua -- Ub)] 2 + [V2(va - vb)] 2dA,

r 2

&,v - L2 £[V. (E - V_)]2dA,

Jvo_= L-V [V. k x (Y_- Yb)]_dA,and

Here

• (Ub, Vb) is the background wind.

• C is the relative vorticity.

• k is the unit vertical vector.

Details of the calculation of & are given in the appendix (§ C).

(9)

(10)

(11)

(12)

4 Response to a single ship observation

Experiments with a single conventional wind observation are presented in this section. These

experiments are similar to those in H84. However results of the current experiments are

somewhat at odds with the earlier conclusions because H84 was overly optimistic about the

convergence of the 2d-VAR minimization and did not always use sufficient iterations in high

resolution experiments. Here we show that

13



• The 2d-VAR solution (after sumcient iterations) is only weakly dependent on grid

resolution. (Fig. 3.)

• The 2d-VARsolutions (eachof which is the end of a convergentiteration) convergeas

resolution increases.(Fig. 4.)

• The convergencerate of the 2d-VAR minimization as presently implementedis slow,

especiallyasresolution increases.(Fig. 5.)

• For practical purposes,a high resolution 2d-VAR analysesshould be obtained as the

last in a seriesof 2dATARanalysesat increasingresolution, each initialized by the

previousone.

• At high resolution, the effect of interpolation errors becomesnoticeable and bicubic

interpolation shouldbe used. (Fig. 9.)

• The sum of two single "obs" solutions is qualitatively the sameasthe solution for the

two "obs" together. (Fig. 10.)

4.a Methodology

Most of the results presented in this section are based on 2d-VAR analyses for a single ship

at 42N, 50W, observing 30 rns -1, from 210 °. For these experiments the background field is

taken to be totally calm. The resulting analyses are essentially Green's functions, i.e., the

response of the analysis to a single impulse.

All analyses are done on a grid large enough that boundary effects should be small. The

grid runs from 290E to 330E, and from 24N to 60N. For graphical output we thinned (or

interpolated) the analysis grid to one degree resolution in the window 302E to 322E and 35N

to 50N.

Most results are for

),= (Aco_v, AvwM, ALAp, AD,v,A,,oR, kDrN) T = (80,1,4,16,4,64) T,

14



and the single ship "obs". These /_ values are equivalent to the nominal case we have used

before except that JvwM is given 1/4 of the weight used by H84.

4.b Results

Results for the current nominal case are given in Fig. 1. The response is nearly 20 rns -1 at the

observation location. The response is elongated in the direction of the wind observation, and

at sutficient distance in the perpendicular direction, there is a return flow, most significantly

to the northwest.

The qualitative response for the nominal case is similar the response of ordinary statistical

(or optimal) interpolation to a single wind observation. Fig. 2 shows the optimal interpolation

result for the same situation, assuming the wind component "obs" standard deviation for

ships is 2.2 rns -1 and using NOGAPS forecast error statistics (Goerss and Phoebus 1993

[17]). Compared to the nominal case, these results are more symmetric, with the influence of

the data extended further in the transverse direction and less in the longitudinal direction.

4.b.1 Effect of grid resolution

Runs were made with grid increments of 2, 1, 1/2, 1/4 and 1/8 ° using various methods of

initialization and stopping criteria.

For resolutions from 1 to 1/8 ° (Fig. 3 shows the results for 2 to 1/4 °) the solutions are

nearly the same. That is, if everything else is fixed (weights, data, domain, ...) 2d-VAR

produces the same answer independent of resolution, if it is allowed to iterate sufficiently.

The 2 ° solution (Fig. 3) has somewhat jagged contours and exhibits less return flow, but is

similar to the higher resolution solutions.

The implication of these findings is that for constraints like those we have been using,

anything finer than a 1 ° resolution is unnecessary and only relatively small errors are in-

troduced by using 2 ° resolution. Using a higher resolution 2d-VAIR grid would not produce

a higher resolution analysis, only more grid points. Weaker background constraints should

produce an analysis more closely fitting high resolution data.
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In Fig. 4 differenceswith respectto the 1/8° solution aredisplayed. Clearly, the solutions

obtained areapproachinga limit asthe resolution is increased.Differencesareconcentrated

at the ':obs" location. These differences are small and in obtaining these results it is criti-

cal that the 2d-VAR minimization has converged. Doubling the resolution, quadruples the

degrees of freedom, quadruples the computation effort per iteration and quadruples the num-

ber of iterations required to achieve comparable accuracy, thereby increasing the memory

requirement by a factor of 4 and the timing requirement by a factor of 16. At high resolution,

convergence to the true solution is quite slow, and for the results of Fig. 3 we used many iter-

ations and computed the solutions in sequence of increasing resolution, using the previously

computed half resolution solution as the initial estimate in each case. The iteration stopped

according to (1) with e = 0.0001 and Nf = 1000. This occurred for resolutions of 2, 1, and

1/2 ° after 73, 210, and 846 iterations, respectively. Higher resolution solutions terminated

after 1000 iterations.

4.b.2 Convergence of the minimization

The reason for the slow convergence of the 2d-VAR minimization at high resolution is illus-

trated by Fig. 5. This shows the results at 1/2 ° resolution, beginning with a zero initial

estimate, after 25, 50, 100, and 200 iterations. 2d-VAR initially attempts to fit the ship

"obs" locally. At any iteration, if a grid point currently has a zero analysis wind increment

(relative to the background) and if all its neighbors do also, then all the constraints are

perfectly satisfied and there will be no change during the next iteration. As a result the

pattern of the solution slowly expands and grows during the iteration.

Many iterations were needed to show that the numerical solution is approaching a limiting

(presumably true) solution. However for practical purposes it is sufficient to iterate 25 times

at 2 °, interpolate to 1°, iterate 25 more times, and continuing this process to the desired

resolution. We call this process regridding. Regridding with only 25 iterates per resolution

step provides agreement to the most accurate solution to within 1 ms -1 at resolutions of

1/2 ° and better, and agreement to the converged solution for the same grid increment to
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1 rns -1 or better at all resolutions. The latter result is illustrated by Fig. 6, and the former

may be inferred from Fig. 6 and Fig. 4.

4.b.3 Sensitivity to the A weights

Analyses with varying A weights were made using 1/2 ° resolution. In these analyses (and

in analyses presented in following sections), up to 1000 iterations were allowed after initial

estimates were developed using the regridding process described in the previous section.

In Table 2 the total number of flmction evaluations used is listed in the column headed

IV:. This number is approximately 60 more than the number of iterations used in the final

minimization.

Fig. 7 shows selected results obtained by varying some of the A weights by a factor of

4. The actual A weights used are listed in Table 2, except that in all cases AvwM = 1, and

the background weight is effectively altered by changing all other weights in the opposite

sense. Changing the "obs" weight (panel ' 'obs' ' +) changes the amplitude of the response,

but does not change the shape or scale of the response. In fact the solutions for different

AcoNv, with everything else held constant, are remarkably well correlated in the sense that

one solution is nearly equal to another solution times a constant. Increasing the filtering

and dynamic constraints (panel Constraints +) gives a solution of larger spatial scale, with

smaller amplitude and less return flow to the right and left of the wind "obs". Decreasing the

weight given the fit to the background (panel Background -) provides a generally bigger

response of the same shape, but larger spatial scale, relative to the nominal case.

The half-width at half-height of the 2d-VAR response to a single "obs" might be used to

define the effective resolution of the analysis. Fig. 7 shows that this resolution is controlled by

the weight given the filtering and dynamic constraints relative to the background constraint.

On the other hand the amplitude of the 2d-VAR response can be controlled by varying Aco_v.

For the nominal case changing some of the Am by a factor of 4 results in a 25-30% change

in amplitude or scale of the response (Table 2 and Fig. 7).

Fig. 8 shows selected results obtained by setting some of the weights to zero. In general,
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eliminating a constraint increasesthe amplitude of the analysis. Eliminating the divergence

and vorticity penalty functions (panel w/o DIg, VOR)gives a solution of similar spatial

scale,with larger amplitude and greater return flow to the right and left of the wind "obs".

Eliminating the dynamicconstraint (panelw/o DYN) results in a less elongated solution, less

return flow and larger amplitude at the "obs" location. Eliminating both the divergence

and vorticity penalty functions and the dynamic constraint (panel LAP only) gives a very

symmetric pattern with no variation in wind direction. In this case the problem for each

velocity component is effectively decoupled. In the cases without the dynamic constraint

(the right column of Fig. 8), there is no dependence on the Coriolis parameter or indeed

on location, and the solutions are symmetric about the line defined by the observed wind

vector.

4.b.4 Effect of interpolation

In general gridded values of wind components are interpolated to the "obs" locations. In

the experiments described before, the "obs" location is coincident with a grid point. In such

cases the interpolation weight is one for the coincident grid point, and zero for all other grid

points. Effectively, no interpolation takes place in such cases.

To examine the effect of interpolation we shifted the "obs" location to 42.25N, 49.75W.

Analyses were created for varying resolutions and for bilinear and bicubic interpolation.

Fig. 9 shows differences with respect to the solution for 1/4 ° resolution. Such differences

show the combined effects of interpolation and resolution, and should be compared with

Fig. 4. Note that for resolutions of 1/4 ° and finer, the "obs" location is coincident with a

grid point, and the solution does not depend on the interpolation procedure used. The 1/4 °

solution is identical, but shifted by 1/4 ° north and east with respect to the nominal case.

The linear interpolation produces a solution with larger analyzed values. This is antici-

pated since bilinear interpolation on a grid cell, unlike higher order interpolations, can not

produce any values outside the range of the gridded values surrounding the grid cell.

In general the interpolation errors are the same size or smaller than the resolution errors.
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However at 1/2 ° resolution, linear interpolation errors are noticeable, while cubic interpola-

tion introduces errors which are small compared to the effect of resolution.

4.b.5 Solutions with two observations

A second "obs" at 45N, 50\¥, of 27 ms -1 from 350 ° is added to our nominal experiment.

The two observations are similar to the two critical observations close to the center of the

QE II storm studied by Hoffman (1982 [22]). The response of 2d-VAR to "a second obser-

vation" (panel in Fig. 10) by itself is analogous to the results of the nominal case. That is,

the response is aligned with the observed wind direction, and is proportional to the observed

wind speed. Adding a second observation results in a solution due to "two observations"

which is qualitatively in agreement with, but weaker than, the "sum of solutions" for each

observation separately. However, the sum of the individual solutions is considerably weaker

than the solution for the two observations.

4.c Discussion

Clearly there is room for improvements in the minimization procedures used. In other

problems of this sort good preconditioning is vital for fast convergence. This may be helpful,

but all variables in the present problem are wind components and have uniform scaling.

Furthermore, the discussion regarding Fig. 5 shows that the number of iterations required

must grow at least linearly with the number of grid intervals required to traverse the domain.

Therefore the multigrid strategy of solving the same problem with increasing grid resolution

initialized from the previous solution should be generally useful. A spectral representation

might also be helpful in this regard. Alternatively, but for conventional observations only, a

good initial estimate at any resolution might be obtained by a Green's function approach.

In this approach we would add approximations to the solution for each single "obs" to

the background. For each "obs" a standard solution would be rotated to alignment with

the "obs" and scaled by the difference between the "obs" and background to provide the

approximate single "obs" solution.
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The results described here have some bearing on a high resolution 2d-'V%R. With low

weight given to the background and high weight given to the filtering and dynamic constraints

the response of 2d-VAR is spread out. Any resolution with a grid spacing small enough to

resolve the response will give the same result when fully converged. A high resolution analysis

requires greater data density and less weight given to the filtering and dynamic constraints.

With this adjustment to the A weights, the response of 2d-VAR is spatially narrower. For

this reason and to resolve the details potentially present in a high density data set, smaller

grid spacing is required.

5 Comparison to OI

As mentioned earlier, 2dArAR can be considered a form of OI in which the background

error correlations are parameterized with a small number of degrees of freedom. Here we

demonstrate that with properly chosen ,_ weights, 2d-VAR produces analyses similar to those

produced by OI. It should be noted that OI uses geostrophy as a strong constraint, while

2d-VAR uses the time rate of change of vorticity computed from the full primitive equations

(as described in § C) as a weak constraint. Thus differences might be expected in the tropics.

The example shown here is therefore in the extratropics.

Fig. 11 shows the NSCAT observations in the region used for the experiments described

in this section. For the purposes of comparing assimilation techniques, the unique 25 krn

NSCAT winds are thinned to _-, 75 krn resolution by retaining only every third WVC across

track. Fig. 12 shows the background wind field used. NSCAT observation locations are

marked by small black dots and the background wind speed is contoured every 2 rns -_.

The implementation of OI used, the Theater Analysis Procedures (TAP) (Nehrkorn 2000,

Nehrkorn and Hoffman 1996 [41, 42]), is similar to the Navy FNMOC OI of Coerss and

Phoebus (1992 [16]). Standard values of the statistics were used here, treating the scat-

terometer winds as ship reports with a default wind component error standard deviation

(s_) of 2.2 rns -1.
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Fig. 13showsan OI analysisfor a regionof rev 2607at 2000UTC 15February 1997.For

this analysis,su has been increased by a factor of two to avoid overfitting the dense satellite

observations. Fig. 14 shows the analysis increments (analysis-background) for the analysis

in Fig. 13. The increments are significant and broaden the circulation around the cyclone as

seen in the observations. Statistics for the background and analyzed wind field are found in

Table 3. The rrns vector analysis increment is 2.716 ms -1.

We then tried to match a 2d-VAR analysis to the OI solution for the same swath of data.

In our search, we fixed the 2d-VAR A weights for background and smoothness constraints

((AvwM, ALAp, ADrW, AvOR, ADYN) = (1, 2, 8, 2, 8)), and varied the weight given to the data

(AcoNv = 5, 10, 20).

Table 3 also shows the differences between the 2d-VAR and OI analysis presented above.

A particularly good match, with rms vector wind difference of only 0.584 rns -1 was obtained

using AcoNw=5.

6 Ambiguity removal approach

6.a Definition of scatterometer "obs" functions

For conventional ship or buoy observations Jco_v is simply the sum of squared vector differ-

ences between the "obs" and the analysis. For scatterometer data, we use two formulations.

The first formulation, the method of H84, uses the retrieved scatterometer wind ambiguities

in two "obs" functions--JAMB and JsPD. For a single location, when the analysis is close

to one of the ambiguities, the misfit measured by Ja_,B approximates the squared vector

differences between the ambiguity closest to the analysis and the analysis. Away from the

ambiguities JAMB approaches a constant. The variability in wind speed among ambiguities

at a singIe location is relatively smaii (H84). Therefore the observed mean or rms wind

speed averaged over the ambiguities at each location is representative of the scatterometer

wind speed. This value is used in the definition of JsPD. The second formnlation uses the

observed backscatter values in JN_cs. For a single location, the misfit measured by J_Rcs is
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the likelihood function usedto retrieve ambiguities. The likelihood flmction is equal to the

squarednormalizeddifferencesbetweenthe simulatedand observedscatterometera ° values.

An optional log term may be included when the c_° variance is parameterized in terms of the

analyzed cr0 as explained below. Th6paut et al. (1993 [56]) used a slightly simplified form of

JNRCS •

Alternative formulations have been suggested for the loss function for scatterometer data.

For example, operational use of EI_S-1 and ERS-2 data at ECMWF uses the formulation of

Stoffelen and Anderson (1997 [54]). Also, the variational QC of Andersson and J_rvinen(1999

[1]) might be extended to scatterometer data, by treating each ambiguity as a ship report.

These reports would be inconsistent at each location and the QC algorithm would essentially

select one ambiguity at each location.

Example plots of JNRcs, JAMB and the ECMWF formulation are given in Fig. 15 for

a single WVC. The precise definitions of J,_Rcs, JAMB and JspD are given in the following

subsections. If o ° values are used directly in 2d-VAR, the loss fimction due to a single WVC

is the MLE (Fig. 15a). This surface shows the complexity of the highly nonlinear wind

retrieval problem. Note that the center of the figure is not shaded because the values there

are very large, O(105), compared to those plotted in the vicinity of the minima, O(10°-102).

The MLE has multiple minima, four in this case, which correspond to the ambiguous wind

solutions. The minima are distributed in an annulus of near-minimum values at roughly the

same wind speed. The four minima are not equally deep, which implies that each solution

has a slightly different likelihood of being the true wind. In fact, if there were no "obs" or

model function errors, only one solution would be found--the true wind.

If ambiguous winds are used in 2d-VAR, then the loss function of a single WVC is JAMB

(Fig. 15b). This approximation of J_Rcs loses some of the structure seen in Fig. 15a, but

still reflects the four wind solutions as minima and is less severely nonlinear, especially near

the origin. Note that if the background wind field is close to one of the four wind solutions,

the influence of other observations or meteorological constraints will be necessary to shift

the analysis from near one minimum to another during the 2d-VAR minimization.
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For comparison, we also show the two-wind loss ruction of Stoffelen and Anderson used

at ECMWF (Fig. 15c). This is the best behaved of the three functions, but is also the

crudest approximation to the MLE. Only the two most likely winds are used since one of

these solutions is very close to the true wind more than 90% of the time. The smooth nature

of this function allows the analysis to be moved from one minima to another during the

assimilation more easily than either the MLE or H84 formulation. However, this formulation

may also permit an analysis solution which is not very close to either minima because of its

smoothness.

6.a.1 Loss function for scatterometer backscatter values

For each backscatter "obs", the normalized departure is

0-0o -- O-0a

zo -- (13)
S o -

Here

• 000 is the backscatter observation.

• o°a is the simulated backscatter observation.

• so is the standard deviation of the o ° "obs".

Theoretical estimates of the standard deviation of scatterometer measurements show that

scr = Kpo ° (14)

(Fischer 1972 [14]). Here Kp is proportionality constant. The subscript p is used because Igp

is originally defined in terms of the radar power. The JPL model for the standard deviation

of the NSCAT 00 "obs" extends this model to

4 = KpA(o°)2+ ° +  :pc (15)

(Long et al. 1988 [36]). (For ERS-1,2 (14) is used.) When evaluating so., o ° may be the

observed value or the simulated value. If the simulated value is used, a logarithm term
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should be added to the loss function to be consistent with maximum likelihood estimation

theory. That is

JNRcs = _--_[z2a + ln(sa)]. (16)

The term in brackets comes about from taking the logarithm of minus the normal probability

function of c_°_ given _°o. In practice the logarithmic term is not normally used.

A model function or forward model is used to simulate cr°. As described in § 2, the

model function calculates cT° as a function of wind speed and direction and the geometry

and polarization of the observation. The geometry is specified in terms of the pointing

direction of the antenna and the incidence angle. For NSCAT the NSCAT-2 model function

is preferred.

6.a.2 Loss function for ambiguous scatterometer winds

For ambiguous wind vectors the formulation of H84 is used. At each WVC,

K

JAMB _ --2= SNSCAT II d2o[1 -exp(-d_/d2o)], (17)
k=l

where the sum is over all WVCs, and

= - + _ v )2. (18)

Here

• K is the number of ambiguities.

• k is the index of the ambiguities.

• (uk, vk) is the kth wind ambiguity.

• dk is the magnitude of the vector difference between analysis and ambiguity k.

• do is the wind speed scale for the "obs".

do = (19)
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• 17o is the mean or rms wind speed for the "obs".

ambiguities,

K

Vo = K-I E _/(_tk)2 -_ (vk)2, or

k=l

• -y is the scaling factor for the wind speed.

• SNSCAT is the wind component standard deviation for the WVC.

Nominal values for 7 and SNSCAT are 2 and 1 ms -1 respectively,.

The mean or rrns is over the K

K

vo_ = K -1E(_k) 2+ (vk)2. (20)
k=l

6.a.3 Loss function for scatterometer wind speed

The wind speed operator is designed to take advantage of the relatively unambiguous wind

speed information in scatterometer data. In analogy to (6) we define JsPD as,

JspD= Z (vo- vo)'2-2 "
S V

(21)

Here

• I_ is the analyzed wind speed.

• Ko is the observed wind speed.

• sv is the wind speed error standard deviation.

This formulation has been used with SSM/I observations (Atlas et al. 1991, 1996 [2, 3]).

The same loss function may be used for line-of-sight (LOS) wind speed in place of wind

speed as long as the analyzed LOS wind speed can be calculated. This requires knowledge

of the antenna pointing direction. In H84 a different wind speed functional was introduced.

It is equivalent to (21) if Sv is multiplied by the factor _/1 + Ko/V0, where I._ is a constant

2 ms -_. Note that this has the effect of giving more weight to low wind speed reports.
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6.b Scatterometer quality control

6.b.1 Gross checks

Gross checking is performed when the data is read from source files and prevents nonsensical

or nonphysical values from being stored in 2d-VAR data structures. For example, NSCAT

values of o ° > 30 dB are eliminated. Small negative values of c_° are nonphysical but are

indicative of very light winds (Pierson 1989 [46]), and in 2d-VAR are replaced with a small

positive value equivalent to -60 dB.

6.b.2 Background and analysis checks

Background and analysis checks are done by comparing observations with the current analy-

sis. At the start of the process, when the current analysis is the background, this procedure

is a background check. Later it is a preliminary analysis check. Data failing the background

check may be considered by a later (and stricter) analysis check. This allows some of the

data eliminated by earlier QC back into the analysis.

As in H84, if the magnitude of the difference between wind vectors (or wind speeds) is

greater than the average of the observed and analyzed wind speed, tile observation fails QC.

If the difference between the wind directions is > 60 °, the observation fails QC. However,

very small or zero winds are handled as a special case, so that when both observation and

analysis indicate calm conditions, the previous checks are bypassed. The background and

analysis checks apply to conventional data as well as to scatterometer winds. For ambiguities,

only the ambiguity closest (i.e., with the smallest vector difference) to the current analysis

is checked.

For NSCAT cr° data, we use a simple departure test for each cr° measurement in dB space.

CyOo -- CyOa _> "7NSCAT (22)

We have used "fNSCAT _- 9 dB for both background and analysis checks, which typically

eliminates _ 5% of the data.
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7 Use of ambiguous winds versus o ° observations

When using a ° observations, 2d-VAR essentially carries out a simultaneous retrieval of

NSCAT winds for all data presented to the analysis. If NSCAT ambiguous winds and

a0 data represent the same geophysical information, namely ocean surface wind stress, we

expect 2d-VAR to produce similar wind analyses using either data source. If this is correct,

A for ambiguous wind and ao data must exist which produce similar analyses. To determine

such equitable A for ambiguous winds and c*° data, we can examine any measure of the

misfit between data and analysis versus a range of A. We say the A are equitable when the

misfit of the analysis of the ambiguous winds is the same as the misfit of the analysis of the

cr° data. This provides an example of tuning the A weights. Note that differences between

winds-based and cr°-based analyses will also arise for other reasons:

1. Quality control decisions made for cr° and wind data may result in different data being

used,

2. WVCs with no ambiguities may contain valid c,° data, and

3. The ambiguous wind observation loss function, JAMB, is an approximation to the a °

data loss function (JNRc,s) (compare Figs. 15a and 15b).

The first two reasons will only effect a small fraction of the data presented to 2d-VAR while

the third reason may effect all data to a small degree. With respect to the second reason,

note that a single c_° value is not sufficient to infer a set of ambiguities but is sufficient to

refine the background wind in 2d-VAR. With respect to the third reason, the a0 loss function

(J_acs) will permit a wider variety of wind directions in the minimizing analysis compared

to the ambiguous winds loss function (JAMB), because of the shapes of the functions surfaces.

That is, JNRcs has an annulus of minimum values (all wind directions) with secondary local

minima embedded while the minima in JAMB are more clearly separated.

To evaluate the analysis fit to the data, we use the rms wind speed difference between

the 2d-VA1R analysis interpolated to NSCAT WVCs and the first ranked (i.e., highest MLE)
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JPL ambiguity. For two North Atlantic cases,oneon 19September1996of Hurricane Lili in

the westernAtlantic and oneon 27 October 1996of acyclonewestof Ireland, analysesusing

ambiguouswinds and a0 data were created using a range of A. In theseexperimentsthe

nominal setup includes a 1 x 1° grid over an area 20° of latitude by 20 ° longitude centered

over an NSCAT data swath. The analyzed field is interpolated to observation locations by

linear interpolation. The Ai for background constraints are held fixed for all analyses at

(AVWM,ALap, AD,V, AVOa, ADyN)T = (1,1,4,1,16) r.

The minimizations were allowed t.o run until the gradient test was satisfied (e = 10-3). The

A weights used for the winds and cr° analyses are

AaMB,NRCS= 1/1024,1/256,1/64,1/16,1/4,1,4,16,64,256,1024.

Smaller A weights for scattterometer data required fewer iterations to reach convergence

(typically 10-30), and larger A weights required more (200-600). The stronger constraint

imposed by larger A weights (> 4) often caused the minimization to fail, since a new search

direction could not be found to reduce the cost function any further.

Fig. 16 shows the 7"ms analysis-NSCAT observations difference as a function of _ weight

for both ambiguous wind (w) and c_° (s) analyses for the October 27 case. For very small

A, the analyses of wind and a ° data are scarcely changed and fit the wind observations

equally poorly (_ 4 ms-l). For large A (> 4), the analyses of wind and a0 data fit the wind

observations much more closely, and again, equally (_ 1.5 ms-l). The lower limit of the

rrns fit is governed by our choice of )u for the background constraints. If the background

constraints were weakened (i.e., smaller IW'M, AL_, AD_v, AvoR), the fit of the analysis to

wind observations would improve. In the limit of no background constraints, the analysis

would fit the observations exactly. But without any constraints on smoothness or divergence

and vorticity, the solution may be unrealistic. The lower limit of rrns fit is, in this case,

also dependent on the robustness of the minimizer. The minimizations in analyses with

)h_Rcs> 1/4 and AAMB_> 256 fail to converge sufficiently because a direction of descent
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cannot be found to within machineprecision. This explains why the fit to a ° does not

improve for A_'Rcs> 1.

A background field, temporally interpolated to 2230 UTC October 27, 1996 from 6-

hourly NCEP 1000 hPa wind analyses, was used for the tuning experiments presented next

(see Fig. 17). (The other tuning case - Hurricane Lili, October 17, 1996 - produced similar

results and will not be shown.) To illustrate that ambiguous winds and a ° data represent

the same information, Fig. 18 shows analyses and increments for AAMB=4 and ANRcs=I/4.

The upper panels show 2d-VAR analyses and the lower panels show analysis increments

times ten. The analyses are very similar in pattern and magnitude. While the analysis

domain rms vector magnitude is 3.144 ms -1 for the winds-based analysis increments and

2.198 ms -_ for the c_°-based analysis increments, it is 1.856 ms -1 for the difference of the

two analyses. Differences between the analyses are subtle. The center of the low is displaced

very slightly to the east in the ambiguous winds analysis relative to the background and

the cr° analysis. Also, in the region south of Ireland, winds from the southwest in the

background are changed to more southerly winds in the ambiguous winds analysis (easily

seen in the increments, lower panels). This change produces a circulation pattern around

the cyclone which is slightly tess circular than in the a ° analysis. This is very likely due the

the difference in the observation loss functions. JA._B draws the solution toward one of the

wind ambiguities, generally not permitting a solution to fall between minima. In contrast,

J_Rcs tends to allow any solution within the annulus of minimum values, with only a minor

preference for the retrieved solutions (i.e., for the local minima within the annulus). Apart

from these minor differences, it is clear that wind and a ° data, while handled very differently

by 2d-VAR, produce nearly the same result given an appropriate choice of AAMB and AxRcs.

8 Dual ambiguity processing

While more than two winds are often retrieved from a group of colocated cT° measurements,

one of the two ambiguities with the highest MLE values is very likely (>90%) to be closest

29



to the true wind (JPL 1997[32]). This implies that <10e_of the third and fourth ranked

ambiguitiesareclosestto the true wind. This information canbe usedto QC the data given

to 2d-VAR,and improve ambiguity removal.

We observedthat using all availableambiguities in 2d-VAR,or equivalently using the

cr° values, leads to patches of poor ambiguity selection. This is especially true where there

are four ambiguities and the direction of the the third or fourth ambiguity is close to the

direction of the background wind field. Using "dual ambiguities" (i.e., the two ambiguities

with the highest MLE values) narrows the choice to one of the two most likely possibilities.

This allows for larger (> 45 °) wind direction corrections to the background field. Using dual

ambiguities only, however, naturally limits ambiguity selection to the first or second ranked

ambiguity since the analysis will generally be drawn toward one or the other.

To allow for selection from all ambiguities, we have developed a two stage analysis pro-

cedure which blends the use of dual and all ambiguities. In the first stage, we use dual

ambiguities for 50 iterations of the minimizer to draw the analysis toward one of the two

most likely observed winds. In the second stage, we include all ambiguities and continue to

minimize until the convergence criteria are met. An alternative is to switch to cr° values after

the first stage. The second stage allows for readjustment of the analysis in the few locations

where the third or fourth ranked ambiguity is closest to the true wind.

During the first stage, we only use dual ambiguities which pass dual ambiguity quality

control or "dual QC". Dual QC is based on a conceptual model of dual ambiguities. Nom-

inally, we expect the wind directions of dual ambiguities to be opposed by _180. ° If not,

the retrieved winds are suspect and are not included in the first (dual ambiguities) stage.

Specifically, retrieved winds fail dual QC and are not used in the first minimization if the di-

rections of the two most likely ambiguities are within 37r/4 of each other. Dual QC typically

eliminates _20% of WVC's from the first minimization.
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8.a Dual QC ambiguity removal examples

One measure of the performance of ambiguity removal with 2d-VAR is a direct comparison

with another successful ambiguity removal scheme. Here we compare our results with the

NWP-initialized or "nudged" median filter used by JPL for ambiguity removal, and with

ambiguities chosen to be closest to the NWP analysis used as the background. 2d-VAR

winds and median filter winds agree in a large proportion of the WVCs, typically 95%.

Detailed statistical comparisons for the whole NSCAT mission are given by Henderson et al.

(2001 [21]).

In cases of disagreement both sets of winds are still horizontally coherent. In our synoptic

evaluation, we find 2d-VAR winds tend to be more meteorologically reasonable. Recall that

both methods are nonlinear and have multiple solutions. Because 2d-VAR requires dynamic

consistency and the median filter does not, solutions of the median filter are not necessarily

solutions of 2d-VAR. For example, two blocks of winds with opposite directions can satisfy

the median filter, but not 2d-VAR.

As a test of our dual-QC procedure we initially processed 234 orbits of NSCAT data based

on the NSCAT-1 model function during the period 15 October-5 November 1996. JPL and

2d-VAR ambiguity selection differences are predominately at lower wind speeds (Table 4).

To further assess the performance of 2d-VAR, we use GOES-8 imagery to locate mesoscale

meteorological features in the North Atlantic, for the subset of 29 orbits passing over the

North Atlantic when the sun elevation angle was sufficient to make use of the GOES visible

channel (Grassotti et al. 1999 [20]). We examined 11 North Atlantic scenes where JPL and

2d-VAR ambiguity selection differed. From the 11 scenes, 29 subregions were examined in

detail. For brevity, we present one of the subregions below and then summarize the results

of all 29.

8.a.1 Case of 26 October 1996

Fig. 19 shows GOES-8 IR brightness temperature over the North Atlantic at 1315 UTC

26 October 1996. NSCAT data locations are marked by the fine black dots, and WVC's
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where JPL and 2d-VAR-selectedambiguities differ are marked by heavy blue dots. The

scatterometercrossed30N at 1314UTC. DifferencesbetweenJPL and 2d-VAR-selectedam-

biguities occur in small patchesnear (35W, 29N), (37\¥, 41N), (30W, 45N), and (32W, 57N)

in Fig. 19. In regionA, satellite imageryshowsthat the scatterometerpassedovera mature

cycloneat 36\¥, 41N.

Fig. 20 shows ECMWF (thin red barbs) and 2d-VAR (thick black barbs) analyses in

region A over an image of GOES-8 IR brightness temperature. NSCAT WVC locations are

marked by small black circles, and points where JPL and 2d-VAR ambiguity selection differ

are marked by larger blue circles with white centers. It is interesting to note several effects

of the NSCAT data on 2d-VAR surface wind analysis. The circulation center in 2d-VAR

analysis is moved north and east of the center in the ECMWF analysis. The placement in

the 2d-VAR analysis is in better agreement with the satellite image. Also, the wind speeds

around the cyclone are higher (roughly doubled) in the 2d-VAR analysis than in the ECMWF

analysis.

All JPL ambiguities in subregion A1 of Fig. 20 are plotted in Fig. 21. The ambiguous

winds are consistent with a cyclone centered at 36W, 41N. Fig. 22 shows JPL and 2d-VAR

selected ambiguities for subregion A1. A physically unlikely east-west wind shift exists in

the JPL ambiguites in the northwest quadrant of the storm (37W, 41.5N). The satellite

imagery is more consistent with the circular wind flow around the cyclone center evident in

Fig. 22b, which shows 2d-VAR selected ambiguities. Note that 2d-VAR positions the center

of circulation > 50 km south of the wind shift in the JPL selected ambiguities.

8.a.2 Summary of All Cases with Colocated GOES Imagery

The subregion presented in §8.a.1 is one of 29 cases where 2d-VAR and JPL ambiguity

selection differ that were examined for the three week period. These cases include cloudy

and clear scenes, tropics and mid-latitudes, and coastal and open water regions. The re-

sults from each subregion are categorized by the differences between the JPL and 2d-VAR

selected ambiguities. Using GOES-8 imagery and general knowledge of the local wind field
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from ECMWF analyses,2d-VARselectedambiguitiesare determinedto be either 1) clearly

improved over JPL selectedambiguities, 2) different from JPL but equally plausible, or 3)

clearly worse than JPL selectedambiguities. For reference,2d-VAR selectedambiguities

weredetermined to bea clear improvementoverJPL selectedambiguitiesfor the subregion

presentedin §8.a.1. For the 29subregionsweexamined,

• 10subregionsareclearly improved over JPL selectedambiguities

• 16subregionsaredifferent from JPL but equally plausible

• 3 subregionsareclearly worsethan JPL selectedambiguities

Casesclassified as "equally plausible" often occur when the evidencefrom the imagery is

not decisive. For example,sometimesa front is alignedwith a cloud feature in both 2d-VAR

and JPL selectionsbut displacedone or two WVCs in the perpendiculardirection. In other

"equally plausible" casesall ambiguities are inconsistentwith the imagery.

9 Concluding remarks

2d-VAR provides an alternative method of ambiguity removal for NSCAT data. In this paper

we describe both 2d-VAR and its application to NSCAT data. Experiments with a single

ship observation illustrate the numerical behavior and sensitivity of 2d-VAR. Note that single

observation experiments with 2d-VAR when normalized to have a unit response at the "obs"

location, are the background error correlations with the single "obs". (This is a general

result: Th@aut et al. (1993 [56]) essentially showed this for a more complicated situation.)

In experiments based on no tuning other than the subjective tuning described by H84, the

response of 2d-VAR to a single ship observation is very similar to the response of OI analyses

making use of models of forecast error statistics used operationally by FNMOC (Goerss and

Phoebus 1992 [16]). Therefore the subjectively tuned 2d-VAR approximates OI. Idealized

OI experiments with a swath of unique NSCAT winds demonstrate the close relationship

between 2d-VAR and OI. 2d-VAR analyses can be used to select ambiguities by choosing
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the ambiguouswind closestto the analyzedwind field at eachWVC location. Comparisons

between the useof ambiguities and backscatter in 2d-VAR show the near equivalenceof

thesetwo data for this purposeand also demonstratetuning the A weights. Whether using

ambiguities or backscatter, the objective function is highly nonlinear--multiple solutions

are possible.The analysistends to settle on the ambiguity closestto the backgroundfield.

When the backgroundquality is not sufficient, the fraction of third and fourth ambiguities

chosenis larger than expected: NSCAT and buoy colocationsshow that more than 90%of

selectedambiguitiesshould be the first or secondambiguity. This leadsto the concept of

"dual-ambiguities" quality control (dual-QC).

Ambiguity removalusing 2d-VARshowspromise and may have advantagesovermedian

filter techniques.While JPL and 2d-VARambiguity selectiondiffer for only _5% of WVC's,

the differencestend to occur in patches.Patchesof poorly selectedwindscanbemoreharmful

to analysisandforecastingsystemsthan scatterederrorsif not properly quality controlled. In

_30% of the casesexamined,2d-VARselectedambiguitiesarea clear improvementoverJPL

selectedambiguities. In _-,60%of thesecases,there was either insufficient information to

determine which choicewas more likely or a reasonablesolution was not present in the

ambiguities. In the remaining _-, 10% of these cases,the JPL selectedambiguities are

preferred. In a companion article (Henderson et al. 2001 [21]), we process the entire 9-

month mission using the latest version of the data from JPL based on the NSCAT-2 model

function.

Further work could be done to investigate the use of the scatterometer backscatter mea-

surements (cT°) directly for ambiguity removal. This may prove most useful in cases when

a suitable solution does not seem to exist in the retrieved winds. Many of the principles

learned here are applicable to NASA's current Seawinds scatterometer on the QuikSCAT

satellite. In addition there are other factors which we have studied in other contexts which

impact ambiguity removal. Positional errors in the background field can have a substan-

tial effect on ambiguity selection. Henderson et al. (2001 [21]) show the effect of using a

very poor background. Smaller positional errors might be handled within 2d-VAR using our
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method for feature calibration and alignment (Hoffman et al. 1995, Hoffman and Grassotti

1996, Grassotti et al. 1999 [25, 24, 19]). Rain effects seem to be important for QuikSCAT

(Jones et al. 2000, Mears et al. 2000 [31, 37]). However for NSCAT, limited experiments

with rain flagging show small impacts on 2d-VAR results. Grassotti et al. (1999 [20]) de-

veloped a rain flag for NSCAT data based on geostationary visible-infrared imagery. That

study was a demonstration restricted to three weeks of data in the fall of 1996 in the North

Atlantic. For most cases studied by Grassotti et al., the effect of removing flagged WVC on

ambiguity removal using 2d-VAR was small. Still, occasionally, large differences can result

from eliminating just one WVC.
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A Representation of the wind fields

For the purpose of minimization, we consider J to be a function of X, which is known as

the control variable.

wind field. That is

We must be able to map the control variables to a complete gridded

= M(x). (23)

Here

,, V_ is the gridded wind analysis.

• M is the mapping operator from control variables to gridded winds.
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• X is the control variable vector.

Nominally Ira is the 10 m neutral stability wind field. All observed winds should be translated

into a 10 m neutral stability wind. If only the height of the observation is known, then the

neutral logarithmic wind profile may be used to adjust the wind observation to 10 m. The

control variables might contain grid point wind components, spectral coefficients of analysis

increments, or some other representation of the wind fields. In one sense X must completely

describe the wind field, however any constant auxiliary information may be used by 33.

The grid is specified in terms of longitude and latitude denoted for convenience by the

variables x and y, respectively. The usual setup is to evaluate all the functionals over a

rectangular region in x and y. However the data acceptance window for evaluating the do

terms and the integration domain for evaluating the db terms may be specified individu-

ally,. (In fact one could specify these domains individually for each component of these cost

functions.) To begin, we define the integration domain:

For both x and y there is a starting location, an increment 5, and a number of grid

boxes n. These grid boxes are numbered from 1 to n and the corresponding grid points are

numbered from 0 to n,

Grid box 1 2 ... n I
i

Grid point 0 1 2 --- n - 1 n

To evaluate some of the finite difference operators and to allow higher order horizontal

interpolation, a boundary zone one grid box wide is added to the grid. The grid point

indices therefore run from -1 to n + 1, and the boundary grid boxes are numbered 0 and

n + 1. Therefore

Grid box

Grid point - 1

0 ] 1 2 ...lnn+l

0 1 2 .-- n-1 n n+l

Grid points 0 and n at the integration boundary may be either active or passive, i.e. allowed

to vary during the minimization or held fixed. If they are held fixed they are part of the

boundary. In the experiments reported here they are active and part of the control vector.
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The domain may be periodic in the x direction. In this case grid points i and i + 27r/5 are

the same. Our implementation does not allow pole points.

With the grid specified, we now describe the operator .M. The fixed points of the grid

are held constant or reset to their fixed values. All other values are copied from locations

in X to locations in Va. Therefore X may be taken to be the concatenation of portions of

the gridded wind component arrays which have been reshaped into vectors. The relevant

portions are free to vary and do not extend beyond one period in the x direction. If the grid

is periodic some values may be copied twice.

B Horizontal interpolation

The grid point values of the (u, v) wind components are interpolated bilinearly to the "obs"

locations. (That is, u and v are separately interpolated first in longitude and then in lati-

tude.) In some experiments, a bicubic interpolator is used. Since the interpolated value is

a linear function of the data values at the grid points, we simplify the adjoint calculation

by formulating the interpolation as a weighted sum of grid point values. The key point

is that these weights are constants depending only on the "obs" location. Interpolating in

one dimension and then in the other, shows the weight for a grid value is the product of

the weights for interpolating in each single dimension. In a single dimension, the weights

are most easily determined from the Lagrange multiplier representation of the colocating

polynomial,

[i¢I_j x--xi]f(x) = _. xj- xi fj' (24)
3

where fj are the data at locations xj. The sum and product in (24) are from 1 to N + 1,

where N is the order of the polynomial. Cubic interpolation for example requires four data

points. When x is equal to one of the zj, the weights in (24) reduce to one for j and zero

otherwise. The bicubic interpolation actually uses a 12 point mask, following Ritchie et al.

(1995, Fig. 2 [48]).
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C Calculation of the background constraints

The background constraints are all formulated as

Jm = S-_ (_,_(Va) - P_m(V_))_dA. (25)

That is, each background constraint term, JT_, listed in Table 1 may be written as the scaled

integral of the squared difference of some operator applied to the analysis field and to the

background field.

Below, several of the operators 7_ are put in the form,

= v.Q.

In numerical experiments, we found that this version of the Laplacian leads to an instability

in the minimization. Instead the Laplacian is calculated at each grid point and then JvwM

and JLae are calculated in the same way, by averaging four adjacent grid point values to

estimate the value at the center of the grid box. (See the discussion in § C.2.)

The filtering constraints are based on minimizing the vorticity, divergence and Laplacian

of the analysis increments. We call these constraints filtering because they tend to eliminate

small spatial scales. The dynamic constraint is based on minimizing the analysis increments

of the time rate of change of vorticity. An second similar dynamic constraint could easily be

formulated in terms of divergence, but would require introducing surface pressure into the

problem. The background constraints and scales are specified in terms of Sin, 7_,,_ and Q,_

as follows:

m

VWM

LAP

DIV

VGR

DYN

T-2L4

T-2

T-2L 2

T-2L 2

T-4L2

V

(V2u, V2v)

V-V

-V.k×V

o¢/ot

V

k×V

-(( + f)V-le × F
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Here

• f is the Coriolis parameter.

• F is the surface friction term in the momentum equation.

The definitions of the Qm for JD_v and JvoR follow immediately from the definitions of

the 7_m and the vector identities. To compute the dynamic constraint and to determine the

QDvN, we start with the equations from Bourke et al. (1977 [6]) for the time rate of change

of vorticity. We then eliminate horizontal (but not surface / friction and vertical advection

terms. Horizontal friction is negligible at synoptic scales. Formally the vertical velocity in

sigma coordinates is zero at the surface.

C.1 Finite differencing

Simple finite difference forms are used. If the components of Q are (p, q), then in spherical

geometry,

and

where for any p and q,

tan ¢
V. Q _ p:_ + qu q, (27)

a

Vq = (qx, qv), (28)

Pi+l,j -- Pi-l,j qid+l -- qi,j-1 (29)
Px,ij = 2a COS yjSx ' qy,ij = 2aSy

These finite difference forms are applied directly at a grid point to evaluate _'. However, the

7_ are evaluated at the center of the grid box. Instead of applying (29) directly in (27) at

the grid points and then averaging, we apply (27) at the center of the grid box. We evaluate

P--7by first averaging in y and then differencing in x. The overbar indicates a value at the

center of the gridbox. Similarly, we evaluate _ by first averaging in x and then differencing

in y. For _, we again take the average of the corner grid point values.
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C.2 Evaluation of integrals

All integrals are put in the form of (25).

form--one for each wind component.

For all Jm we discretize the integral as

For JvwM and dj_p

J._ = _(ARij)2Aij -,
i,j

there are two integrals of this

(30)

where

• A/5_j is the estimate of 7_,_(Va) -- 7Zm(Vb) at the middle of grid box ij.

• Aij is the area of grid box ij.

As mentioned for JVWM and JLA,, the /_ are estimated as the average of the four corner

grid point values. For the other constraints, the/),_ are estimated as described in § C.1.

C.3 The gradient calculation

Simple finite difference formula are used because J is ad hoc and the A are adjustable. Thus

we may easily subsume the approximation errors introduced by the finite difference and

integration formula into the assumption that minimizing J provides the optimal analysis. In

other words, we identi_, the best analysis as the minimizer of the discrete formulation of J.

These considerations suggest choosing simple averaging and difference forms. However, it is

vital that once the finite difference version of J is chosen, the gradient of J be calculated as

exactly and precisely as possible.

The calculation of Jb and its gradient may be made efficient, both in terms of calculations

and memory, as follows. Since both the analysis and background fields are gridded, it is

possible to evaluate all of the constraints by sweeping from south to north in latitude. In

addition the total background function may be considered to be the weighted sum of many

partial cost functions, one for each constraint and each grid box. Since the weights are

fixed and known a priori, it is possible to accumulate the contributions of these partial

40



cost functions to the sensitivities of the total backgroundfunction in the samesweepover

latitude.
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TABLE LEGENDS

Table 1: Summary of "obs" functions and background constraints used in the variational anal-

ysis. Subscript a refers to anab'zed values (e.g., V_ is the anMyzed wind vector),

subscript b to background values, subscript o to observed values, and subscript k to

the kth ambiguity retrieved &ore scatterometer data. Other subscripts are defined in

the table, and X, _ and ( are velocity potential, stream function and relative vortic-

ity, respectively. For clarity scaling factors are not included in this table. Complete

definitions and our implementation are detailed in the text.

Table 2: Summary of the A weights and results for the sensitivity experiments described in

the text. In all experiments listed AVWM= 1. In addition to the values of the other

A weights the table lists the total number of function evaluations (Nf), the rms

gradient of the objective function (VJ(xl06)), and the objective function itself (Y).

The analysis speed ([VI) and direction (@ are given at the "obs" location.

Table 3: Statistics comparing surface _4nd analyses from optimal interpolation (OI) and 2d-

"t44R with the background and the first analysis in the table. The QI analysis uses

twice the nominal wind component error standard deviation (s_). In the remaining

analyses, the 2d-VAR I weights are held fixed, excepting ACONV which is varied

systematically. The statistics calculated are the mean and the rms of the wind speed

for the field, the rms of the magnitude of the vector differences between the analyses

and background (denoted increment), and the rms of the magnitude of the vector

differences between the analyses and O[ anaS"sis (denoted difference).

Table 4: Differences between JPL and 2d-VAR ambiguity selection as a function of _4nd speed

for i5 October-5 November 1996. The column la,beled N gives the number of com-

parisons in each wind speed bin.
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FIGURE LEGENDS

Fig. 1: Analyzed wind field for 1/2 ° resolution, full3," converged for the nominal case described

in the text. Here, and in the figures which follow, the wind barbs are in knots and all

results are presented on a 1 ° grid. Also the color scale shown here (in ms -1) is used

in the figures which follow.

Fig. 2: Statistical interpolation results using NOGAPS statistics.

Fig. 3: The effect of resolution, t_esults for 2, 1, 1//2 and 1/4 ° resolution. The panel labeled

"1//2 degree resolution" repeats the results shown in Fig. 1.

Fig. 4: Differences, scaled by I0, from the result for 1/8 ° resolution, for the results for 2, 1,

1//2 and 1/4 ° resolution (shown in Fig. 3). (In the first panel, and in future figures,

results greater than 20 ms -I are colored (yellow) as if they were 20 rn,s -1.)

Fig. 5: The sequence of results for increasing number of iterations for 1/2 ° resolution, starting

from a zero initial estimate.

Fig. 6: Differences (times i0) between the result using only 25 iterations at each resolution

and the "fully" converged solutions (shown in Fig. 3) for 2, 1, 1//2 and 1/4 ° resolution.

Fig. 7: Solutions for different A weights. The nominal case is shown in the lower left panel.

The ILAV, IDly, AvoR, and ADV,, increase by a factor of 4 in the right column, while

AcoNv increases by a factor of 4 in the upper row.

Fig. 8: Solutions for setting some of the A weights to zero. The nominal case is shown in the

lower left panel. The ADyN is set to zero in the right column, while AD_Vand AvoR are

set to zero in the upper row.
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Fig. 9: Differences (times 10) from the solution for 1/4 ° resolution for runs at 1 ° and 1/2 °

using bilinear and bicubic interpolation procedures.

Fig. 10: Effect of adding a second surface wind observation. The difference (times 10) of the

solution for two observations minus the sum of the individual solutions is shown in

the lower right panel.

Fig. 11: JPL-selected ambiguities from rev 260Z

Fig. 12: Background _qnd field, time interpolated to 1930 UTC February 15, 1997 from six'-

hourly ECMIYF 10 m wind fields. _Vind speed is contoured every 2 ms -1 and NSCAT

"obs" locations are plotted as small black dots.

Fig. 13: Wind field analysis from TAP Mth the standard deviation of "obs" error inflated by

a factor of two. Wind speed is contoured every 2 ms -1 and NSCAT "obs" locations

are plotted as small black dots.

Fig. 14: Wind field analysis increments from TAP corresponding to Fig. 13. I¥ind speed is

contoured every 2 ms -1 and NSCAT "obs" locations are plotted as small black dots.

Fig. 15: 2dA(4R observation operators evaluated for one IVVC using a ° values directly (upper

panel), and ambiguous _qnds (middle panel). For reference, the corresponding two-

wind observation operator in use at ECM_VF is shown (lower panel) (Stoffelen and

. nderso. (1997

Fig. 16: The rms fit of analyses to NSCAT wind observations as a function of logao(A) weight

for the October 27, 1996 case (rev 1025). Curves for analyses using ambiguous wind

(w) and _r° (s) observations are shown.
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Fig. 17: NCEP background for _4nds and a ° analyses, valid at 2230 UTC October 27, 1996.

Fig. 18: Comparison of VAM analyses from wind and o ° observations for )_AMB=4 and

ANnCS=I/4, valid at 2230 UTC October 27, 1996. The upper panels are analyses

and lower panels are analysis increments (analysis-background times ten).

Fig. 19: North Atlantic overview at 1315 UTC 26 Oct 1996 including GOES-8 IR brightness

temperature (K). NSCAT IYVC locations are marked by fine black dots. Heavy blue

dots mark _.VVC's where JPL and 2d-I.'i4R ambiguity selection differ.

Fig. 20: ECMWF (thin red barbs) and 2d-VAR (thick black barbs) analyses in region A with

GOES-8 IR brightness temperature. See Fig. 19 for the location of region A. NSCAT

VVVC locations are marked by fine Mack dots. Blue circles with white centers mark

IVVCs where JPL and 2d-I.(4R ambiguity selection differ.

Fig. 21: All JPL ambiguities and GOES-8 IR brightness temperature in subregion A1. See

Fig. 20 for location of subregion A1. Blue circles with white centers mark WVCs

where JPL and 2d-_(4R ambiguity selection differ.

Fig. 22: JPL (a) and 2d-IJ:4R (b) selected ambiguities, and GOES-8 IR brightness temperature

in subregion A1. See Fig. 20 for location of subregion A1. Blue circles with white

centers mark _¥VCs where JPL and 2d-ld4R ambiguity selection differ.
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TABLES

Table 1:

Term Expression Description

"Obs" functions

JCONV

JAMB

JSPD

JNRCS

E(Vo- <)2

E l]k{1- exp[-(V_- Vk)_]}

E[IE)- rms([Vol)]2

E(_°a -_°o) 2

for the conventional data

for the ambiguous winds

for the scatterometer wind speed

for the backscatter

Background constraints

JvxArM

JLAP

Jmv

JvoR

JDYN

f(E - vb)2

f[V2(u_ - ub)]2 + f[V2(va - Vb)]2

f[v_(_o- _)]_

f (O¢_/Ot - O<b/Ot) 2

on the vector wind magnitude

on the Laplacian of the wind components

on the divergence

on the vorticity

on the vorticity tendency

Table 2:

Run AcoNv "_LAP /_DIV "_VOR /_DYN IV I 0 Nf VJ J

Nominal 80 4 16 4 64 18.65 210 994 127 12937

"Obs" + 320 4 16 4 64 25.73 210 1060 1822 18715

Constraints + 80 16 64 16 256 11.78 209 1060 378 21398

Background - 320 16 64 16 256 20.83 210 1060 39460 41044

w/o DIV, VOR 80 4 0 0 64 21.91 210 1060 2188 9278

w/o DYN 80 4 16 4 0 21.64 210 498 119 10036

LAP only 80 4 0 0 0 25.17 210 513 107 5793
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Table 3:

Name mean rms increment difference

Background 8.788

OI analysis, s_ x 2 9.508

2d-VAR analysis, AcoNv=5 9.510

2d-VAR analysis, AcoNv=10 9.601

2d-VAR analysis, Acoxv=20 9.675

9.287 -- --

10.187 2.716 --

10.183 2.726 0.584

10.277 2.942 0.739

10.351 3.109 0.935

Table 4:

Wind Speed (ms -1) N % Different

0-2 260521 18.379

2-4 836017 11.169

4-16 5867770 3.807

>16 142815 1.438

All 7107123 5.141
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Fig. 5:
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Fig. 9:

linear interpolation, 1 degree grid
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Fig. 10:

a second observation two observations
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Fig. 11:
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Fig. 12:
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Fig. 13:
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Fig. 14:
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Fig. 15:
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Fig. 19:
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